
Intro to Binary
Exploitation

Contacts:

Telegram & Discord: @MatteB_01

OUR TELEGRAM CHANNEL AND DISCORD SERVER

 >>>>>>> m0leCon_Beginner <<<<<<<<

Useful Resources

● https://pwn.college/
● http://pwnable.kr/
● https://dhavalkapil.com/blogs/Buffer-Overflow-Exploit/
● https://github.com/Tzaoh/pwning
● https://beginners.re/

https://pwn.college/
http://pwnable.kr/
https://dhavalkapil.com/blogs/Buffer-Overflow-Exploit/
https://github.com/Tzaoh/pwning
https://beginners.re/

What is binary exploitation?

The art of exploiting vulnerabilities in a program to achieve

something not intended.

● This can be done through ANY input

What does PWNING mean?

What you will need

Low-level
● How a program works
● Disassemblers
● Decompilers
● Assembly (x86, ARM, MIPS …)

High-level
● C (reversing)
● Python (exploiting)

The thought process of a pwner

● what does a program/service do
● what’s stinky
● what could I investigate further
● i found a misbehaviour, what caused

it, can i escalate it further?

static and dynamic analysis of a program

STATIC ANALYSIS
● Done by analyzing the source code

(or what has been decompiled)
● Requires decompilers (Ghidra, IDA,

Binary Ninja, etc.)

DYNAMIC ANALYSIS
● Done by analyzing the flow of the

program while it is running
● Requires debuggers (gdb,

pwndbg) and/or tracers (ltrace,
strace)

Dynamic Analysis
gdb and pwndbg → “The purpose of a debugger such as GDB is to allow you to see what is
going on "inside" another program while it executes. “

“Pwndbg is a Python module which is loaded directly into GDB, and provides a suite of utilities
and crutches to hack around all of the cruft that is GDB and smooth out the rough edges.”

ltrace → “It intercepts and records the dynamic library calls which are called by the executed
process and the signals which are received by that process. It can also intercept and print the
system calls executed by the program.”

strace → “runs the specified command until it exits. It intercepts and records the system calls
which are called by a process and the signals which are received by a process”

BUFFER OVERFLOWS

Process memory and the stack

● what’s the stack

● what’s a stack frame

● calling a function

The stack

The stack is the area inside a process memory designed to store
user data (variables, function pointers, etc.).

The whole stack can be divided into smaller pieces called frames.
Each frame will store the function’s own data (like local variables,
but more on that later).

In assembly, there’s a specific registry (ESP/RSP) that keeps track of
where the stack is and that is used to access local variables inside
the frame.

Function calls

When a function gets called, a stack frame is created for that function.
Suppose we have a program in which the main() function calls printf(); the
situation will look something like this:

The frames are limited by return
pointers, which are pointers used by
the code to know where the execution
needs to go after the called function is
done executing.
As per our example, saying that printf()
is called by main() on line 5, the return
pointer for the frame will point to line 6
of main().

What is a buffer?

A buffer is simply a sequential section of memory allocated to contain anything.

this is a buffer

Buffer overflows

A buffer overflow (in short BOF), occurs when more data is put into a fixed-length
buffer than the buffer can handle. The extra information may overflow into adjacent
memory space, corrupting or overwriting the data held there.

This can allow the attacker to hijack the normal
 flow of the process in various ways

real world BOF vulnerabilities

● CVE-2022-47949 → buffer overflow in Animal Crossing
● CVE-2018-6242 → buffer overflow allowed arbitrary code

execution via USB payloads

CVE-2019-8050 → buffer overflow
while processing malformed PDF

CVE-2023-5474 → buffer overflow via
corrupted PDF

spotting a BOF vulnerability

There are many ways in which a code can be vulnerable to buffer overflows, for
example many C functions do not have any check for the buffer size, the most
common ones are:

● scanf();

● strcpy();

● gets();

● read();

shellcodes

A shellcode is a small piece of executable code used as a payload, built to
exploit vulnerabilities in a system or carry out malicious commands. This can
easily be chained with other type of vulnerabilities that make the execution flow
jump to it in order to make it achieve its tasks.

The snippet of code on the
left makes the process
spawn an interactive shell
for the attacker to use

Mitigations on a program

● Canaries: values stored before
each return pointer.

● NX: Non-eXecutable, code
written on the stack can’t be
executed.

● PIE: Position Independent
Execution, the code will be at a
different address each run.

BOF CHALLENGES

FORMAT STRING
VULNERABILITIES

Format strings

The printf() function normally expects the first argument to be a string containing
format specifiers (%s, %d, %x, …). However, if a bad programmer makes a call to
printf() and feeds it user-controlled input as a first argument, things can get
dangerous.

printf() will treat the user input as a format string; if the latter contains format
specifiers, printf() will gently replace those with data from the stack and cause a
memory leak, which an attacker might easily escalate

INTEGER ISSUES

Integer issues
In most programming languages, integer have a default size of 32 bits, the most
significant one of which is used as a “sign” identifier (32th bit set to 1 means the
number is negative). On an 8-bit representation (where the 8th is the sign bit),
integers look like this:

Exploiting integer issues

Suppose we have a program that keeps
incrementing an integer on user’s request
without any checks, what might happen is that
the integer gets so big (all the bits are set to 1
except the 32th) that incrementing it again will
cause it to become negative (setting the 32th bit
to 1). This might often allow an attacker to bypass
checks or perform generally malicious activities.

In last year’s workshop

THANKS FOR YOUR
ATTENTION

