Intro to Binary
Exploitation

Contacts:

Telegram & Discord: @MatteB_01

OUR TELEGRAM CHANNEL AND DISCORD SERVER

SSS>S>>S> mOIeCon_Beginner <LLLLL<L<L

Useful Resources

https://pwn.college/

http://pwnable.kr/
https://dhavalkapil.com/blogs/Buffer-Overflow-Exploit/
https://github.com/Tzaoh/pwning

https://beginners.re/

https://pwn.college/
http://pwnable.kr/
https://dhavalkapil.com/blogs/Buffer-Overflow-Exploit/
https://github.com/Tzaoh/pwning
https://beginners.re/

What is binary exploitation?

The art of exploiting vulnerabilities in a program to achieve

something not intended.

e This can be done through ANY input

What does PWNING mean?

Verb [edit]

pwn (third-person singular simple present pwns, present participle pwning, simple past and past
participle pwned or pwnd or pwnt)

1. (Internet slang, online gaming, originally leet, transitive, intransitive) To own, to defeat or
dominate (someone or something, especially a game or someone playing a game).

What you will need

Low-level

e How a program works

e Disassemblers

e Decompilers

e Assembly (x86, ARM, MIPS ...

High-level

C (reversing)
Python (exploiting)

The thought process of a pwner

what does a program/service do
what’s stinky

what could | investigate further

i found a misbehaviour, what caused
it, can i escalate it further?

detektiv

static and dynamic analysis of a program

STATIC ANALYSIS
e Done by analyzing the source code
(or what has been decompiled)
e Requires decompilers (Ghidra, IDA,
Binary Ninja, etc.)

DYNAMIC ANALYSIS
e Done by analyzing the flow of the
program while it is running
e Requires debuggers (gdb,
pwndbg) and/or tracers (ltrace,
strace)

Dynamic Analysis

gdb and pwndbg = “The purpose of a debugger such as GDB is to allow you to see what is
going on "inside" another program while it executes. “

“Pwndbg is a Python module which is loaded directly into GDB, and provides a suite of utilities
and crutches to hack around all of the cruft that is GDB and smooth out the rough edges.”

Itrace = “It intercepts and records the dynamic library calls which are called by the executed
process and the signals which are received by that process. It can also intercept and print the
system calls executed by the program.”

strace =» “runs the specified command until it exits. It intercepts and records the system calls
which are called by a process and the signals which are received by a process”

BUFFER OVERFLOWS

Process memory and the stack

what'’s the stack
what’s a stack frame

calling a function

OxfEffffff

0xc0000000

0x40000000

0x08048000

0

kernel virtual memory memory
(code, data, heap, stack) T invisible to
user code
user stack
ted at runti)
ceme a+run ne) %esp (stack pointer)
4

memory mapped region for
shared libraries

1

run-time heap
(created at runtime by malloc)

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

unused

+— brk

loaded from the
executable file

The stack

The stack is the area inside a process memory designed to store
user data (variables, function pointers, etc.).

The whole stack can be divided into smaller pieces called frames.
Each frame will store the function’s own data (like local variables,
but more on that later).

In assembly, there’s a specific registry (ESP/RSP) that keeps track of
where the stack is and that is used to access local variables inside
the frame.

Function calls

When a function gets called, a stack frame is created for that function.
Suppose we have a program in which the main() function calls printf(); the
situation will look something like this:

The frames are limited by return
pointers, which are pointers used by
the code to know where the execution
needs to go after the called function is
—— done executing.

main() As per our example, saying that printf()
is called by main() on line 5, the return
pointer for the frame will point to line 6
of main().

Stack frame for
printf()

What is a buffer?

A buffer is simply a sequential section of memory allocated to contain anything.

this is a buffer

gets(buf);

Buffer overflows

A buffer overflow (in short BOF), occurs when more data is put into a fixed-length
buffer than the buffer can handle. The extra information may overflow into adjacent

memory space, corrupting or overwriting the data held there.

ESP

This can allow the attacker to hijack the normal
flow of the process in various ways

EBP

foo() with 11 A’s

AAAA
AAAA
AAA

Saved EBP
Return Address

Argy[1]

[6] CALL strcopy()

Copies value of Argy[1]
into space reserved for

local variable c

ESP

EBP

foo() with 150 A’s

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA

AAAA

[6] CALL strcopy()

Copies value of Argv[1]
into space reserved for
local variable ¢

real world BOF vulnerabilities
o CVE-2022-47949 » buffer overflow in Animal Crossing

e CVE-2018-6242 » buffer overflow allowed arbitrary code
execution via USB payloads

CVE-2019-8050 » buffer overflow
while processing malformed PDF Adobe Reader

CVE-2023-5474 » buffer overflow via

' corrupted PDF

<A NVIDIA.

spotting a BOF vulnerability

There are many ways in which a code can be vulnerable to buffer overflows, for
example many C functions do not have any check for the buffer size, the most
common ones are:

e scanf();
e strcpy();
o gets();

e read();

shellcodes

A shellcode is a small piece of executable code used as a payload, built to
exploit vulnerabilities in a system or carry out malicious commands. This can
easily be chained with other type of vulnerabilities that make the execution flow
jump to it in order to make it achieve its tasks.

; execve("/bin/sh™, ["/bin/sh™], NULL)

section .text
global _start

_start:

xor rdx, rdx

mov qword rbx, '//bin/sh'

shr rbx, ox8

push rbx .

mov rdi, rsp The snippet of code on the
push rax

STE left makes the process

it gy spawn an interactive shell
syscall for the attacker to use

Mitigations on a program

Canaries: values stored before
each return pointer.

NX: Non-eXecutable, code
written on the stack can’t be
executed.

PIE: Position Independent
Execution, the code will be at a
different address each run.

BOF CHALLENGES

FORMAT STRING
VULNERABILITIES

Format strings
printf(“My age is %d”,23);

The printf() function normally expects the first argument to be a string containing
format specifiers (%s, %d, %X, ..). However, if a bad programmer makes a call to
printf() and feeds it user-controlled input as a first argument, things can get
dangerous.

printf() will treat the user input as a format string; if the latter contains format
specifiers, printf() will gently replace those with data from the stack and cause a
memory leak, which an attacker might easily escalate

INTEGER ISSUES

Integer issues

In most programming languages, integer have a default size of 32 bits, the most
significant one of which is used as a “sign” identifier (32th bit set to 1 means the
number is negative). On an 8-bit representation (where the 8th is the sign bit),
integers look like this:

19111 1111 (+127)!
|
19111 1110 (+126)!

—
10000 0001 (+1)§
'0000 0000 (+0)
1111 1111 (-1)
1111 1110 (-2)

1000 0000 (-128)

Exploiting integer issues

Suppose we have a program that keeps
incrementing an integer on user’s request
without any checks, what might happen is that
the integer gets so big (all the bits are set to 1
except the 32th) that incrementing it again will
cause it to become negative (setting the 32th bit
to 1). This might often allow an attacker to bypass
checks or perform generally malicious activities.

Overflow
FFFFFFFF +1=00000000

Signed Integer

Overflow
INTMAX+1 = INTMIN

-2147483648 \J

\

LB
5 2147483647 .

1

In last year’s workshop

PwnAdventure3 (64-bit, GLSL_430)

PwnAdventure3 (64-bit, GLSL_430)

mov

cvtsi2ss xmm

mov rax, 710

cvtsi2ss xmm@, rax

mov rax, qword [rbp

cvtsi2ss xmm2, dword [

divss xmm2, xmm@

movss dword [rbp-0x24 {v
[rbp-

movss xmm2, dword [rb

cvtsi2ss xmm@, dword

movss dword [rbp-0x
movaps xmm@, xmm2
call

mov
mov

cvtsi2ss xmml, ra

movss xmm2, dword
mulss xmm2, xmm@
mulss xmm2, xmml
cvttss2si edx, xmm2
mov dword [rbp-
mov rax, qword [rb
sub ecx, dword [rax
mov dword [rbp-0x2
mov x, dword [rbp
cmp dword [rbp
// jump below or
jbe

r_44_1}11,

xmm2

Xxmm@

THANKS FOR YOUR
ATTENTION

